Peristiwa Bering 2018. Itulah namanya. Satu peristiwa ledakan-benda-langit-di-udara (airburst) yang sejatinya telah terjadi pada Rabu 19 Desember 2018 TU (Tarikh Umum) pukul 06:48 WIB mengambil tempat di atas Laut Bering beratus kilometer lepas pantai timur Semenanjung Kamchatka atau tak jauh dari perbatasan Russia dan Amerika Serikat. Tak kurang dari 96 kiloton energi ledakan dilepaskan airburst ini. Sementara energi totalnya sendiri diperhitungkan mencapai 173 kiloton TNT, membuatnya hampir seterang Matahari pada saat airburst terjadi. Andaikata di sekitar ground zero (yakni titik yang tepat berada di bawah lokasi airburst) terdapat pemukiman penduduk, niscaya mereka bakal terkesiap menyaksikan langit siang bolong (tepatnya pukul 11:48 waktu setempat) mendadak laksana berhias dua Matahari.
Dan andaikata pula Peristiwa Bering 2018 terjadi tiga dasawarsa silam, di tengah puncak Perang Dingin, niscaya alarm bahaya serangan nuklir Uni Soviet (pendahulu Russia) akan berdering-dering nyaring dan siaga nuklir mungkin akan segera diberlakukan. Dan dunia bakal selangkah lebih dekat lagi ke perang nuklir yang ditakuti siapapun. Beruntung Peristiwa Bering 2018 terjadi di masakini, kala pemantauan langit dan cara membedakan ledakan nuklir terhadap aksi pelepasan berenergi tinggi yang mirip telah bisa dilakukan dengan beragam metode.
Bhangmeter dan Mikrobarometer
Peristiwa Bering 2018 sejatinya langsung terdeteksi oleh setidaknya 3 instrumen (radas) berbeda. Dan segera diketahui oleh para cendekia yang berspesialisasi padanya. Namun memang baru dipublikasikan kepada umum dalam pertengahan Maret 2019 TU ini saja. Dari ketiga radas tersebut, yang pertama adalah satelit mata-mata yang dikelola Departemen Pertahanan Amerika Serikat. Satelit rahasia ini dilengkapi bhangmeter, instrumen pengukur tingkat energi melalui fluks cahaya inframerah yang dipancarkan. Bhangmeter memungkinkan mengukur energi optis dari kilatan cahaya Peristiwa Siberia 2018 sekaligus membedakannya dari kilatan cahaya ledakan nuklir. Pada ledakan nuklir, bhangmeter akan menampilkan kurva khas dengan dua bukit (double-peak) dan sebaliknya pada peristiwa non-nuklir tidak demikian.
Radas yang kedua adalah satelit Himawari-8 yang dikelola Badan Meteorologi Jepang, sebuah satelit cuaca berkemampuan tinggi yang dipangkalkan di orbit geostasioner (ketinggian 35.792 km dpl atas garis khatulistiwa) pada lokasi di Samudera Pasifik bagian barat. Sehingga Himawari 8 mampu menyajikan liputan dari sebagian besar daratan Asia, segenap Australia dan segenap perairan Samudera Pasifik. Dan yang ketiga adalah radas mikrobarometer di daratan yang terpsang di sebuah stasiun infrasonik yang bagian jaringan CTBTO (the Comprehensive nuclear Test Ban Treaty Organization), lembaga pengawas penegakan larangan ujicoba nuklir segala matra yang berada di bawah payung PBB (Perserikatan Bangsa-Bangsa). Meski sama-sama dirancang mengendus aktivitas peledakan nuklir khususnya matra atmosferik dan paras Bumi, berbeda dengan satelit mata-mata yang dilengkapi bhangmeter, radas mikrobarometer mengandalkan kemampuan mengendus gelombang infrasonik berpola khas. Detonasi senjata nuklir atmosferik dan permukaan bumi melepaskan gelombang kejut ke udara yang sebagian kecil diantaranya lantas bertransformasi menjadi gelombang infrasonik yang menjalar jauh dan bisa dideteksi.
Pada Peristiwa Bering 2018, bhangmeter sebuah satelit mata-mata merekam kilatan cahaya yang setara pancaran energi optis sebesar 130 TeraJoule. Kurva yang diperolehnya tidak mirip ledakan nuklir. Sehingga disimpulkan sebagai kejadian airburst sebuah benda langit, karena hanya tumbukan benda langit (asteroid atau komet) sajalah yang memiliki tingkat energi setara ledakan nuklir.
Peristiwa Bering 2018 juga dideteksi oleh setidaknya 10 stasiun infrasonik di berbagai penjuru, melewati gelombang infrasonik pada durasi lebih dari 10 detik. Misalnya pada stasiun infrasonik IS18 yang terpasang di pulau Greenland (Denmark). Sinyal infrasonik Peristiwa Bering 2018 yang terekam disini memiliki durasi 20 – 25 detik. Radas mikrobarometer tidak bisa menghasilkan perkiraan energi total sebuah peristiwa, mengingat akurasinya buruk. Peristiwa yang sama juga terpantau satelit Himawari 8 khususnya pada kanal cahaya tampak, Meskipun analisis citranya baru dilaksanakan pada pertengahan Maret 2019 TU ini. Pada citra satelit ini, Peristiwa Bering 2018 nampak sebagai garis berwarna kuning-jingga di antara taburan awan yang berwarna putih. Di samping garis kuning-jingga ini terdeteksi juga garis kehitaman, yang mengesankan sebagai jejak lintasan benda langit tersebut sebelum mengalami airburst.
Analisis Departemen Pertahanan Amerika Serikat yang kemudian dipublikasikan badan antariksa AS (NASA), sebagai bagian kerangka kerjasama yang terbentuk pasca Peristiwa Chelyabinsk 2013, menunjukkan Peristiwa Bering 2018 memiliki energi total 173 kiloton TNT. Hal senada juga diperlihatkan dari analisis sinyal infrasonik, yang menjumpai angka mendekati 200 kiloton TNT. Sehingga secara teknis relatif sama, terlebih mengingat akurasi pengukuran energi airburst lewat sinyal infrasonik yang cenderung buruk. Titik airburst terletak di ketinggian 26 km dpl. Dan benda langit yang terlibat melesat secepat 32 km/detik (115.200 km/jam) dengan membentuk sudut 70º terhadap bidang horizontal di titik targetnya.
Asteroid Mini
Apa penyebab Peristiwa Bering 2018?
Dalam hemat saya, asteroid lah biang keladinya. Analisis saya dengan memanfaatkan serangkaian persamaan matematis dari Collins dkk (Collins, 2005) mengindikasikan penyebab Peristiwa Bering 2018 adalah asteroid dengan komposisi menyerupai meteorit akondrit, tepatnya dengan massa jenis 4.000 kg/m3. Meteorit akondrit adalah salah satu tipe meteorit yang diduga berasal dari bagian kerak benda langit terestrial seperti Mars maupun Bulan. Mereka terlempar ke antariksa oleh rangkaian tumbukan benda langit mahadahsyat di masa silam, lantas melayang-layang layaknya asteroid pada umumnya di keluasan antariksa.
Jika dianggap berbentuk bulat seperti bola, asteroid penyebab Peristiwa Bering 2018 memiliki garis tengah 8,8 meter sehingga merupakan asteroid kecil. Maka massanya sekitar 1.400 ton. Statistik memperlihatkan meteoroid seukuran ini (baik asteroid kecil maupun kepingan komet) memasuki atmosfer Bumi sekali dalam rata-rata setiap 28 tahun.
Saat memasuki atmosfer Bumi bagian atas, gerak dan kecepatan meteoroid ini menyebabkan kolom udara yang dilintasinya mengalami tekanan ram yang kian membesar. Selain membuatnya bertransformasi menjadi meteor super terang (superfireball), tekanan ram yang kian membesar pada akhirnya akan memecah-belah asteroid tersebut mulai dari ketinggian 54 km dpl. Pemecah-belahan ini terus berlangsung dan kian intensif seiring kian jauh superfireball memasuki atmosfer. Hingga pada ketinggian 26 km dpl terjadilah proses pemecah-belahan yang paling intensif, membuat pecahan-pecahan yang terbentuk sontak mengalami deselerasi besar laksana direm di udara. Timbullah airburst yang melepaskan energi hingga 96 kiloton TNT. Pada saat airburst ini terbentuk kilatan cahaya sangat terang dengan tingkat terang (magnitudo semu) setara 70 % Matahari.
Bagaimana Dampaknya?
Seberapa besar sih energi airburst ini? Ledakan bom nuklir Nagasaki berkekuatan 20 kiloton TNT, sehingga airburst tersebut hampir lima kali lipat lebih dahsyat ketimbang bom nuklir Nagasaki. Secara keseluruhan Peristiwa Bering 2018 ini delapan kali lipat lebih dahsyat ketimbang ledakan bom nuklir Nagasaki.
Adakah dampaknya?
Meski energinya terkesan sangat besar bagi kita, namun dengan titik pelepasan energi yang jauh di ketinggian (yakni 26 km dpl) membuat dampaknya ke paras Bumi boleh dikata minimal, bahkan nyaris tidak ada. Pada dasarnya dampak tumbukan benda langit (termasuk dalam peristiwa airburst) mirip dengan dampak ledakan nuklir pada titik yang sama. Dengan mengacu simulasi ledakan nuklir (Dolan dan Glasstone, 1977) maka diperhitungkan pada ground zero saja besarnya tekanan lebih (overpressure) dari gelombang kejut airburst ini hanyalah 183 Pa (atau 19 kg/m2). Ini masih di bawah nilai ambang batas yang besarnya 200 Pa, yakni overpressure minimum yang bisa menghasilkan kerusakan teringan akibat papasan gelombang kejut. Yakni berupa retaknya kaca jendela.
Demikian halnya dengan pelepasan sinar panasnya. Simulasi ledakan nuklir memang memperlihatkan potensi munculnya sinar panas (thermal rays) sebagai imbas terbentuknya bola api airburst. Bola api airburst ini diperhitungkan bergaris tengah 295 meter dan sangat panas (suhu lebih dari 3.000º C) namun umurnya sangat singkat (kurang dari 1 detik). Pada ground zero, fluks panas akibat pembentukan bola api airburst ini diperhitungkan hanya 4,63 kiloJoule/m2. Sementara ambang batas fluks panas bagi luka bakar paling ringan (yakni luka bakar tingkat satu) adalah 5,16 kiloJoule/m2. Sedangkan untuk bisa menghasilkan kerusakan fisik teringan (yakni dalam bentuk terbakarnya/hangusnya kulit batang pohon) dibutuhkan fluks panas minimal 9,93 kiloJoule/m2. Jadi, seperti halnya dalam aspek gelombang kejut, Peristiwa Bering 2018 tidak memberikan dampak dalam hal paparan sinar panasnya.
Sehingga tidak ada dampak lebih lanjut yang dialami kawasan Laut Bering dan sekitarnya akibat Peristiwa Bering 2018. Berbeda halnya dengan Peristiwa Chelyabinsk 2013, yang memiliki ketinggian airburst relatif sama namun energinya jauh lebih besar (hampir 4 kali lipat lebih besar). Sehingga dampaknya ke ground zero dan sekitarnya cukup signifikan terutama dalam aspek gelombang kejut.
Adakah Meteoritnya?
Karena terjadi di tengah laut maka mustahil untuk mengetahui apakah Peristiwa Bering 2018 memproduksi meteorit yang bisa menjadikannya peristiwa boloid dan bukan hanya sekedar superfireball. Secara teoritis minimal 0,1 % dari massa meteoroid yang berbentuk asteroid mini akan selamat dari proses penghancuran di atmosfer Bumi dan melanjutkan perjalanannya hingga mendarat di paras Bumi sebagai meteorit. Untuk Peristiwa Bering 2018, maka sisa meteoroid itu akan setara dengan massa 1,4 ton. Garis tengahnya akan sebesar 0,88 meter, jika sisa meteoroid itu dianggap berbentuk bola sempurna.
Apabila meteorit itu jatuh sebagai bongkahan tunggal ke perairan Samudera Pasifik, maka kecepatannya saat menyentuh air masih 152 m/detik (546 km/jam). Tumbukan ini akan menciptakan tsunami kecil yang khas dengan panjang gelombang 129 meter dan menjalar melintasi perairan dengan kecepatan sekitar 122 km/jam. Tsunami ini demikian kecil sehingga dalam jarak 3 km saja dari titik tumbukannya hanya akan setinggi 0,15 meter. Faktanya sistem peringatan dini tsunami Pasifik tak mendeteksi usikan khas tsunami di Samudera Pasifik bagian utara. Ini menjadi indikasi bahwa kalaupun Peristiwa Bering 2018 memproduksi meteorit, maka meteorit itu jatuh tercebur ke laut bukn sebagai bongkahan tunggal (seperti halnya dalam peristiwa Chelyabinsk 2013). Melainkan sebagai kepingan-kepingan berukuran kecil yang sangat banyak sehingga tak berdampak serius kepada perairan yang dijatuhinya.
[divider_line]Dikutip dari Ekliptika.
Materi yang dikandung oleh asteroid yg meledak itu terdiri dari apa saja sehingga bisa meledak di atmosfir?
bolehkah lebih diperjelas lagi asteroid yang bisa meledak di atmosfir
diperjelas dengan serta gambar atau vidio realnya kalau ada
https://nurseberkarya.blogspot.com