Masa Depan Manusia di Antariksa: Star Trek atau Kolonisasi?

Pada tahun 1968, tahun 2001 terasa masih sangat jauh. Pada tahun pembuka milenium ketiga ini bukan tak mungkin teknologi sudah sangat maju sehingga perjalanan antariksa sudah menjadi sangat umum.

Adakah Seseorang di Luar Sana: Meninjau kembali Persamaan Drake

Mengapa tidak juga menemukan sinyal dari peradaan asing? Salah di mana kita? Marilah kita analisis ulang Persamaan Drake dengan meninjau setiap faktor secara terpisah, agar kita mendapat gambaran akan persoalan yang kita hadapi. Jumlah bintang yang terbentuk setiap tahun, R, adalah 1 dan astronom sudah yakin dengan hal ini setelah mengamati berbagai nebula yang sedang membentuk bintang. Bahkan baru-baru ini telah dipastikan bahwa beberapa milyar tahun lalu, saat bintang yang kini memiliki peradaban sedang dilahirkan, lebih banyak bintang tercipta setiap tahunnya. Jadi nilai R = 3 justru lebih realistis.

Namun demikian, astronom dan ahli biologi kurang yakin pada nilai dari faktor-faktor berikutnya.

Adakah Seseorang di Luar Sana: Mencari kehidupan cerdas di luar Bumi

Pengantar: Artikel ini ditulis pada tahun 2005 untuk Majalah Centaurus, tidak pernah diterbitkan. Dimunculkan pertama kali untuk publik di Langit Selatan. Mohon diperhatikan konteks penulisan artikel pada tahun 2005. Oleh karena itu, kata “hingga saat ini” dan sejenisnya harus diartikan sebagai saat ketika artikel ini ditulis.

Menuju Titik Api: Sebuah Penjelasan-tak-terlalu-teknis Tentang Prinsip Kerja Teleskop, Bagian 5 (tamat): Sementara Itu, di Daerah Panjang Gelombang Lain: Teleskop Radio

Gambar 1. Sumber: Science Cartoons Plus: The Cartoons of S. Harris

Teleskop yang sudah dibicarakan di atas dipakai pada daerah optik yang disebut daerah visual, yaitu daerah kasatmata yang tampak oleh mata. Sementara itu kita mengetahui bahwa cahaya sebenarnya terdiri atas berbagai panjang gelombang, di mana tiap-tiap panjang gelombang membawa energinya sendiri-sendiri. Besarnya energi yang dibawa pada setiap panjang gelombang tidak sama, tetapi berpuncak pada panjang gelombang tertentu. Panjang gelombang berapa yang memancarkan energi maksimal bergantung pada suhu objek tersebut, semakin tinggi suhunya semakin pendek panjang gelombangnya dan semakin biru warnanya. Tidak semua objek memancarkan energi maksimalnya pada daerah visual (daerah visual didefinisikan berada pada rentang panjang gelombang 380 – 750 nanometer. Satu nanometer sama dengan satu per semilyar meter). Banyak sekali objek yang memancarkan energi maksimalnya pada daerah ultraviolet (lebih pendek dari 300 nanometer) atau daerah inframerah (antara 750 nanometer hingga sekitar 1 mm), sehingga apabila kita mengamati objek-objek tersebut hanya pada daerah visual akan banyak sekali informasi yang tidak kita peroleh. Oleh karena itu diciptakan berbagai alat untuk dapat mendeteksi keseluruhan rentang energi gelombang elektromagnetik (Gambar 2), pada daerah-daerah ultraviolet, inframerah, dan radio.

Menuju Titik Api: Sebuah Penjelasan-tak-terlalu-teknis Tentang Prinsip Kerja Teleskop, Bagian 4: Refraktor dan Reflektor: Sebuah Perbandingan

Refraktor dan Reflektor: Sebuah Perbandingan
Kelemahan utama refraktor adalah fakta bahwa sinar difokuskan dengan cara dilewatkan melalui medium, dalam hal ini lensa. Indeks bias yang mempengaruhi arah pembelokkan cahaya berbeda-beda untuk setiap warna, sehingga sebenarnya ada banyak titik api untuk berbagai warna (yang letaknya cukup berdekatan), dengan fokus untuk cahaya biru lebih dekat ke lensa daripada fokus cahaya merah. Ini adalah cacat lensa yang disebut aberasi kromatis atau aberasi warna. Pelewatan cahaya melewati medium juga berarti material lensa harus homogen atau serbasama di setiap bagian lensa, dan keserbasamaan (homogenitas) ini makin sulit dipertahankan bisa ukuran lensa semakin besar.

Menuju Titik Api bag 3 : Teleskop Reflektor

Gambar 1 : Atas: Cermin cekung akan memantulkan cahaya menuju satu titik api. Bawah: Gambar ini dibuat oleh Sekretaris Perkumpulan Kerajaan (Royal Society) untuk ahli optik dan astronom Christiaan Huygens di Paris, melaporkan kinerja teleskop reflektor yang dibuat Isaac Newton dan didemonstrasikan di hadapan anggota Perkumpulan Kerajaan pada akhir tahun 1671. Gambar dua mahkota di kiri bawah adalah ornamen sebuah pembaca arah angin sejauh 100 meter, dilihat dengan menggunakan reflektor Newton (A) dan dengan refraktor (B). Sumber: Hoskin, M. (ed.) 1997, The Cambridge Illustrated History of Astronomy, Cambridge University Press. h.153.

Teleskop Reflektor

Isaac Newton menyadari persoalan aberasi kromatis ini ketika mempelajari pemecahan sinar matahari menjadi warna pelangi dengan menggunakan prisma. Dengan tepat ia menyimpulkan bahwa aberasi kromatis adalah persoalan yang terkait dengan lensa (sebagaimana telah disinggung pada bagian tentang refraktor) dan membuat sebuah teleskop reflektor yang menggunakan cermin sebagai pemecahannya (Gambar 1).

Menuju Titik Api bagian 1

Sebuah teleskop pada intinya adalah alat untuk mengumpulkan cahaya, menguatkannya, dan mengumpulkannya pada satu tempat. Walaupun kata “teleskop” dapat dipecah menjadi “tele” yang berarti “jauh” dan “scope” berarti “melihat”, atau kurang lebih maknanya adalah “melihat [objek-ojek] jauh”, tapi fungsi utama sebuah teleskop astronomi bukanlah untuk melihat hingga kejauhan.

Begini cara kerja bintang – Bagian 1: Gravitasi dan tekanan Gas

Tiga orang astronom, Carl Hansen, Steven Kawaler, dan Virginia Trimble, dalam buku teks terbaru mereka tentang struktur bintang, berjudul Stellar Interiors: Physical Principles, Structure, and Evolution (Interior Bintang: Prinsip Fisis, Struktur, dan Evolusi), menulis, “Jika Anda ingin tahu bagaimana bintang bekerja, pergilah keluar dan lihatlah mereka selama beberapa malam. Apa yang mereka lakukan hanyalah bersinar dengan stabil sepanjang waktu.” Secara historis ini betul. Mari kita lihat Matahari sebagai contoh.

Gugus Bintang dalam Awan Molekul

Gugus bintang lahir bersebadan di dalam awan molekul raksasa dan pada saat pembentukannya hanya dapat diamati dalam panjang gelombang inframerah karena awan antar bintang yang melingkupi gugus ini menghamburkan panjang gelombang optik. Dari katalog gugus-gugus muda dapat disusun distribusi usia gugus muda dan gugus terbuka, dan ditemukan bahwa lebih dari 90% gugus muda tidak terus terikat secara gravitasi dan bertahan menjadi gugus terbuka namun menguap dan bergabung dengan bintang-bintang medan di sekitarnya. Dengan kata lain, terdapat tingkat kematian gugus yang tinggi.